
  

 

 

Some aspects of System-Level Verification of ASICs/FPGAs 

  Introduction 

Over the years, chips have grown in size and complexity. It is common for chips to contain one or more 

embedded processors running firmware, multiple embedded RAMs, and multiple design IPs (intellectual 

property blocks) from different IP vendors.  

As chips grow in complexity and more highly integrated, functional verification will require a more 

systematic approach to ensure that the chips are verified and completed within a reasonable time.  

This paper discusses some aspects of system-level functional verification of ASICs and FPGAs. 

  Choosing Verification Methodology 

Most front-end RTL designs are still coded either in Verilog or VHDL hardware description languages 

(HDL). The subset of HDL language syntax used for design coding has not changed much over the years. 

By contrast, HDL language features and methodologies for verification have developed extensively over 

the last fifteen years. 

For current chip development, the main languages used for verification are SystemVerilog and UVM 

(Universal Verification Methodology). SystemVerilog is a major extension of Verilog with many added 

features, including constrained randomization, functional coverage, assertions, and enhancements to the 

various features of the original Verilog language. UVM is developed on top of SystemVerilog to provide 

class-based verification with standard base classes and methodology. 

For the verification tasks, the chip development team will have to decide whether to use SystemVerilog 

only, or SystemVerilog in combination with UVM. At a minimum, any current chip project should at least 

use SystemVerilog for verification instead of the older Verilog or VHDL.  

Whether UVM should be used depends on a number of factors that are unique to the specific requirements 

of the project. These include the nature of the chip design (e.g. using standard protocols, multiple masters 

and targets, etc), whether UVM VIPs are available or developed internally, the experiences of the team, and 

other factors unique to the chip project. UVM is complex and it takes some experience to learn how to use 

its features effectively for verification.  

  Using Vendor IPs 

Chips with integrated third party design IPs (design Intellectual Property) are now common, especially 

chips that use industry standard interfaces such as PCIe, USB, and so on.  

These design IPs would have already been fully verified at the block level by the IP vendors. After 

integrating the IPs into full design, verification is required at the system-level to ensure that the chip design 

works according to specification.  

To assist in verification, some design IP vendors may provide corresponding verification IPs (VIPs) for 

simulation. Other vendors may only provide a base verification IP and the team may need to purchase VIPs 

from other third party vendors, or else the team will need to develop them internally. The vendors may 

have both a non-UVM and a UVM version of the VIP. 

  Preparing Testplan 

The testplan will include one or more documents that describe all the test cases to be run to verify the DUT.  

To prepare the testplan, the verification engineer must read and understand various specifications, including 

internal architecture and design specifications, vendor design and verification IP specifications, industry 

standard protocol specifications (e.g. PCIe, USB, I2C, etc), and others as required. 



 

   

 

 

A thorough understanding of the various specifications is required to come up with a complete testplan and 

to create good test cases to ‘break’ the DUT during simulation. Typically, the test cases will range from 

simple directed tests to testing complex corner case scenarios. The complex test scenarios include 

generating random stimulus, simulating asynchronous events, interactions among multiple concurrent 

design blocks, and so on. 

  Creating Verification Environment 

To run system-level simulation, bus functional models (BFMs) and/or vendor VIPs will be used to generate 

and observe stimulus to the design under test (DUT). The team will typically need to develop some new 

BFMs in addition to any vendor VIPs.  

A system-level testbench is created to verify the DUT. The testbench will include one or more instances of 

the DUT(s), bus functional models (BFMs), vendor VIPs, and any initialization code. The test cases 

generate stimuli and transactions to the DUT via the BFMs or VIPs. The DUT is then verified that its 

behavior meets the chip specification. 

Verification includes checking correct interface protocols, correct end-to-end data transfers, and other 

cases. Interface protocol verification is usually performed by the BFMs or VIPs. End-to-end data transfers 

are usually checked via scoreboard models. In more complex scenarios, the test cases will initiate multiple 

concurrent transactions or threads to stress the DUT, and to auto-check the correctness of data transfers and 

protocols. 

The testbench should be developed to allow simulation of the DUT under different design configurations, 

e.g. different bus width, clock frequencies, operation modes, etc. For ASIC development, another 

consideration is to allow simulation of the DUT at different levels of design representations, such as RTL, 

post-DFT, back-annotated gate-level, etc. 

  Embedded Firmware Co-Simulation 

Many chips have one or more embedded processors running firmware to control the functions of the chip. 

Embedded firmware is typically developed in C, C++ or equivalent. The compiled binary code can be 

converted to a hexadecimal or binary text file for use in simulation together with the DUT. This is known 

as hardware-software co-simulation. 

In co-simulation, the hexadecimal text file is loaded directly into the processor memory model in 

simulation. When running the test cases, the embedded processor will be executing firmware and 

concurrently the BFMs and VIPs will be generating transactions. In this way, the interaction between 

firmware and the various design blocks can be simulated. This is an effective way to catch firmware and 

design issues prior to chip tapeout.  

  Code Coverage and Functional Coverage 

Code and functional coverages provide some measures of the thoroughness of the simulated test cases. 

Code coverage and functional coverage are not the same.  

Code coverage is typically run for block level simulation. It is usually not run at the system-level due to the 

huge effort to analyze code coverage results of the entire chip. The desired coverage for the block is usually 

set at 100%. If this is not achieved, the coverage results are analyzed and then more test cases can be 

developed to achieve 100% coverage.  

Functional coverage is user-defined and can be performed at the block or system level. Functional coverage 

fits well into random simulation where the test vectors are randomly generated. Functional coverage can 

provide feedback as to how thoroughly the random test vectors has exercised the design block. 

It is noted that both code and functional coverages are supplements for the main testplan. Achieving 100% 

code coverage does not guarantee full functional correctness of design; it just means that the test cases 

touched and toggled every line of the design code, but it does not indicate full functional correctness of the 



  

 

 

design code. 

Likewise, achieving 100% functional coverage is not the same as achieving full functional correctness of 

the design. Functional coverage is user-defined, and a 100% functional coverage means that whatever the 

engineer has defined for coverage is 100% exercised by the test vectors. Functional correctness (meeting 

protocol specification, end-to-end data checking, etc) of design will have to be performed and checked by 

the test code, BFMs, scoreboards, and so on. 

  Formal Verification 

Another new verification technique is formal verification. At the present time, formal verification can only 

be run at the block level, as the tool will not converge when analyzing the huge system-level chip design 

space. 

A formal verification tool requires the verification engineer to specify the design behavior using 

SystemVerilog assertions. It is crucial that the full set of assertions that fully describe the block design is 

specified by the engineer. A 100% proven design is only with respect to the set of user-specified assertions. 

If the engineer inadvertently misses out specifying one or more assertions, the formal tool will be unaware 

of this and will only prove the design based on an incomplete set of assertions. In this case, a formal tool 

reporting 100% proven design may not mean that the design is 100% functionally correct. 

  Managing Design and Verification 

A chip project involves a group of engineers in different technical areas of design, verification, backend, 

testing, firmware, etc. Some projects have engineers in multiple remote sites. It is highly desirable for the 

group of engineers to work on a common database that can keep track of all work and changes to all project 

files. A common tool used for this is CVS.  

System-level verification requires running many test cases. For large chips, there may be hundreds of test 

cases to run, and so a regression run strategy should be put in place. Scripts can be developed to initiate 

running all the tests or selected groups of tests in batch mode without user intervention. At the end of the 

run, the scripts can then automatically report the results of the regression runs.  

  FPGA Prototyping 

FPGA runs orders of magnitude faster than simulation, and this can provide a fast feedback as to whether 

something is working or not.  

If the design is simple, FPGA prototyping may be able to fully verify the design. However, for most current 

chips, FPGA prototyping alone will not be able to fully exercise all possible scenarios. By contrast, 

functional simulation has greater control and freedom to create test scenarios using VIPs and BFMs, 

including generating random stimulus, creating concurrent events, controlling interaction among blocks, 

and so on. Simulation also allows the internal signals of the DUT to be controlled and observed for 

debugging, which are harder to do in FPGA prototyping. Simulation can also provide code and functional 

coverages.  

FPGA prototyping can be a good supplement as part of system-level verification. For most current chip 

designs, it is essential to have a good simulation strategy with a thorough testplan to ensure catching as 

many issues as possible prior to tapeout. 

  Conclusion 

As chips grow in complexity and highly integrated, more effort is now focused on functional verification. 

This article discusses some aspects of functional verification of ASICs/FPGAs. 
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